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SUMMARY 
 
 Suisun Marsh, at the geographic center of the San Francisco Estuary, is important habitat 
for introduced and native fishes.  The University of California, Davis, Suisun Marsh Fish Study, 
in partnership with the California Department of Water Resources (DWR) has systematically 
monitored the marsh's fish populations since 1980.  The primary purpose of the study has been 
to determine environmental and anthropogenic factors affecting fish abundance and distribution. 
 2012 was a dry, relatively warm year.  Delta outflow was generally below average 
throughout the year except in December; as a result, salinities were higher than usual during 2012, 
particularly in summer and autumn.  Water clarity was also substantially greater during summer 
and autumn.  Dissolved oxygen levels were sufficient for most fish species, although somewhat 
low values were recorded in small sloughs of the western marsh during spring.  Water 
temperatures were notably warmer than average in January and April. 
 In 2012, 256 otter trawls and 77 beach seines were conducted; catches were dominated by 
introduced species associated with either warmer temperatures or saltier water.  Black Sea 
jellyfish (Maeotias marginata) and Mississippi silverside (Menidia audens) both returned to 
relatively abundant levels in 2012 after the low numbers recorded in 2011.  Striped bass (Morone 
saxatilis) numbers in both beach seines and otter trawls during 2012 were higher than average, 
which appeared due in part to earlier recruitment in the marsh coinciding with abundant mysids.  
In contrast, native fish numbers were lower than normal.  Recruitment of young-of-year 
Sacramento splittail (Pogonichthys macrolepidotus) during 2012 was low, likely because of lack 
of floodplain inundation for spawning and rearing.  Numbers of tule perch (Hysterocarpus 
traski), threespine stickleback (Gasterosteus aculeatus), and prickly sculpin (Cottus asper) were 
also down.  Longfin smelt (Spirinchus thaleichthys) and delta smelt (Hypomesus transpacificus) 
catches were very low during 2012, especially for delta smelt when compared to 2011's relatively 
high catch.  In sum, catches during 2012 were quite typical for a dry, warm, salty year. 
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INTRODUCTION 
 
 Suisun Marsh is a brackish-water marsh bordering the northern edges of Suisun, Grizzly, 
and Honker bays in the San Francisco Estuary (Figure 1); it is the largest uninterrupted expanse 
of estuarine marsh remaining on the western coast of the contiguous United States (Moyle et al. 
1986).  Much of the marsh area is diked wetlands managed for waterfowl, with the rest of the 
acreage consisting of tidal sloughs, marsh plains, and grasslands (DWR 2001).  The marsh's 
central location in the San Francisco Estuary makes it an important nursery for salt-tolerant-
freshwater, estuarine, and marine fishes; the marsh is also a migratory corridor for anadromous 
fishes such as Chinook salmon (Oncorhynchus tshawytscha Vincik 2002). 
 The University of California, Davis, Suisun Marsh Fish Study was begun with DWR in 
1979 to monitor and to understand the abundance and distribution of fishes in relation to each 
other, to abiotic and biotic variables, and to water management (e.g., water exports).  DWR has 
continually partnered with UC Davis to monitor Suisun Marsh fishes to comply with regulatory 
permits.  These permits have required monitoring of the aquatic environment to assess impacts 
on fish and related aquatic life (San Francisco Bay Conservation and Development Commission 
4-84 (M) Special Condition B and US Army Corps of Engineers 16223E58B Special Condition 
1).  The monitoring is further supported by the Revised Suisun Marsh Monitoring Agreement 
(Agreement Number 4600000634). 
 The study has consistently used two methods for sampling fishes: beach seines and otter 
trawls.  Juveniles and adults of all species have been surveyed systematically since 1980; 
between 1994 and 1999, larval fishes were also surveyed to better understand their ecology in the 
marsh (Matern and Meng 2001).  Other objectives have included (1) evaluating the effects of the 
Suisun Marsh Salinity Control Gates on fishes (Matern et al. 2002), which began operating in 
1988 (DWR 2001); (2) examining long-term changes in the Suisun Marsh ecosystem in relation to 
other changes in the San Francisco Estuary (e.g., Rosenfield and Baxter 2007); and (3) enhancing 
understanding of the life history and ecology of key species in the marsh (e.g., O'Rear 2012).  
Secondary objectives have included supporting research by other investigators through special 
collections (e.g., Liu et al.2012); providing background information for in-depth studies of other 
aspects of the Suisun Marsh aquatic ecosystem (e.g., studies of jellyfish biology; Meek et al. 
2012, Wintzer et al. 2011a, b, c); contributing to the general understanding of estuarine systems 
through publication of peer-reviewed papers (e.g., Matern et al. 2002); training undergraduate 
and graduate students in estuarine studies and fish sampling; and providing a venue for managers, 
biologists, and others interested in the marsh to experience it firsthand. 
 Moyle et al. (1986) evaluated the first five years of data collected by the study and found 
three groups of species that exhibited seasonal trends in abundance, primarily due to differences 
in recruitment timing.  The structure of the fish assemblage was relatively constant through time; 
however, total fish abundance declined over the five years.  The decline was partly due to strong 
year classes early in the study period followed by both extremely high river flows and drought 
that resulted in poor recruitment.  The authors also found that native fishes tended to be more 
prevalent in small, shallow sloughs, while introduced species were more prominent in large 
sloughs. 
 Meng et al. (1994) incorporated eight more years into their study, which revealed that the 
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fish assemblage structure was less constant over the longer time period than the earlier study 
indicated.  Additionally, introduced fishes had become more common in small, shallow sloughs.  
Like Moyle et al. (1986), Meng et al. (1994) found a general decline in total fish abundance 
through time, partly because of the negative effects of drought and high salinity on native fishes.  
Matern et al. (2002) found results similar to Meng et al. (1994): fish diversity was highest in 
small sloughs, and native fish abundances continued to fall. 
 In recent years, O'Rear and Moyle (2013b, 2012, 2010, 2009) have bolstered findings of 
previous studies and documented changes that appear to be happening in other parts of the 
estuary.  For instance, the timing, variability, and magnitude of Delta outflow continue to be 
important factors affecting abundance of fishes recruiting into the marsh from upstream or 
downstream areas [e.g., striped bass, yellowfin goby (Acanthogobius flavimanus), respectively].  
Additionally, Delta outflow, through its influence on marsh salinities, has also affected fishes 
produced partially in the marsh [e.g., white catfish (Ameiurus catus) and black crappie (Pomoxis 
nigromaculatus)].  Perhaps most notably, there appears to be a limitation of pelagic food 
supplies sometime in summer that results in an inshore movement of fishes (O'Rear and Moyle 
2013a).  Finally, the marsh still provides vital habitat for at-risk native species (e.g., Sacramento 
splittail, longfin smelt) that is largely and increasingly absent from the Delta. Consequently, the 
Suisun Marsh Fish Study remains instrumental in documenting and understanding changes in the 
biology of the estuary, especially within the context of climate change and future restoration. 
 Several recent studies have assessed the threat of three increasingly numerous introduced 
species on native fishes. Of particular concern have been two species of pelagic jellyfish from the 
Black Sea region that have been extraordinarily abundant during summer and early autumn in 
some years (Wintzer et al. 2011a, Schroeter 2008).  Wintzer et al. (2011b) found that Black Sea 
jellyfish and Moerisia lyonsi fed heavily on calanoid copepods, which are important food items 
of declining pelagic fishes such as delta smelt.  They compared the diets of the jellyfish to those 
of young striped bass and threadfin shad (Dorosoma petenense) and found little potential for 
competition between striped bass and jellyfish, while the likelihood of competition between 
threadfin shad and jellyfish was much higher.  Given that diets of threadfin shad and delta smelt 
have been very similar (Feyrer et al. 2003), while those of striped bass have been more akin to 
those of longfin smelt (Feyrer et al. 2003), jellyfish could be harming delta smelt by reducing 
calanoid abundance.  O'Rear (2012) explored the diet of white catfish, a fish that has been 
recorded as feeding on delta smelt, striped bass, and threadfin shad (Miller 1966).  O'Rear 
collected catfish stomach contents throughout a year in all areas of Suisun Marsh where the 
catfish was abundant.  O’Rear (2012) found that the catfish subsisted largely on food supplied 
by managed wetlands such as the amphipod Eogammrus confervicolus from autumn to spring, 
while much of their diet consisted of slough-produced or bay-produced foods during summer.  
Notably, white catfish never ate at-risk fishes such as striped bass or delta smelt, and their most 
common food - amphipods - was unlikely to be a limiting food resource.  Thus, these studies 
have more finely resolved the effects of these introduced species on native fishes, with white 
catfish appearing relatively innocuous and the jellyfish potentially more pernicious.   
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METHODS 
 
Study Area 
 
 Suisun Marsh is a mosaic of landscape types totaling about 38,000 hectares, with about 
9% of the acreage comprised of tidal sloughs (M. Young, UC Davis, personal communication, 
DWR 2001).  The marsh is contiguous with the northern boundary of Suisun, Grizzly, and 
Honker bays and is central to the San Francisco Estuary (Figure 1), with San Pablo Bay to the 
west and the Sacramento-San Joaquin Delta ("Delta") to the east.  There are two major subtidal 
channels in the marsh: Montezuma and Suisun sloughs (Figure 1).  Montezuma Slough generally 
arcs northwest from the confluence of the Sacramento and San Joaquin rivers, then curves 
southwest and terminates at Grizzly Bay (the major embayment of Suisun Bay).  Major 
tributary sloughs to Montezuma are Denverton and Nurse; Cutoff Slough and Hunter Cut 
connect Suisun and Montezuma sloughs (Figure 1).  Suisun Slough begins near Suisun City and 
meanders south until emptying into Grizzly Bay southwest of the mouth of Montezuma Slough.  
Major tributaries to Suisun Slough, from north to south, are Peytonia, Boynton, Cutoff, Wells, 
Cordelia, and Goodyear sloughs (Figure 1).  First and Second Mallard sloughs are tributary to 
Cutoff Slough and are part of Solano Land Trust's Rush Ranch Open Space preserve; Rush 
Ranch is part of the San Francisco Bay National Estuarine Research Reserve 
(http://www.sfbaynerr.org). 
 Suisun and Montezuma sloughs are generally 100-150 meters (m) wide and 3-7 m deep, 
with banks consisting of a mix of riprap and fringing marsh (Meng et al. 1994).  Tributary 
sloughs are usually 10-20 m wide, 2-4 m deep, and fringed with common reed (Phragmites 
communis) and tules (Schoenoplectus spp.).  Most sloughs in the marsh are diked to some extent, 
although small sloughs (e.g., First Mallard) within the Rush Ranch preserve are undiked and thus 
have marsh plains regularly inundated by high tides.  Substrates in all sloughs are generally fine 
organics, although a few sloughs also have bottoms partially comprised of coarser materials (e.g., 
Denverton Slough; Matern et al. 2002), and the larger, deeper sloughs (e.g., Montezuma Slough) 
can have sandy channel beds. 
 The amount of fresh water flowing into Suisun Marsh is the major determinant of its 
salinity.  Fresh water enters the marsh primarily from the western Delta through Montezuma 
Slough, although small creeks, particularly on the northwest and west edges of the marsh, also 
contribute fresh water.  As a result, salinities are generally lower in the eastern and northwestern 
portions of the marsh.  Freshwater inflows are highest in winter and spring due to rainfall and 
snowmelt runoff; consequently, marsh salinities are lowest in these seasons.  Salt water enters 
the marsh through lower Suisun and lower Montezuma sloughs from Grizzly Bay via tidal 
action, although the effect of the tides is more pronounced on water-surface elevation and less so 
on salinity throughout much of the year (Matern et al. 2002).  During extreme tides, water depths 
can change as much as 2 m over a tidal cycle, often dewatering much of the smaller sloughs at low 
tide and overtopping dikes at high tide. 
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Figure 1.  Suisun Marsh study area ("GYSO" = Goodyear Slough Outfall, "MIDS" = Morrow Island Distribution 
System, "RRDS" = Roaring River Distribution System, "SMSCG" = Suisun Marsh Salinity Control Gates, and 
"WWTP" = the Fairfield-Suisun Sanitation District's wastewater treatment plant discharge point into Boynton 
Slough; map by Amber Manfree). 
 
   
 A number of water management facilities alter the hydrology and water quality of the 
marsh.  State Water Project and Central Valley Project water export facilities in the southern 
Delta affect the timing and magnitude of freshwater flow into Suisun Marsh (DWR 1984). The 
Suisun Marsh Salinity Control Gates, located in Montezuma Slough just downstream of the 
confluence of the Sacramento and San Joaquin rivers, are operated to inhibit saltwater intrusion 
into the marsh during flood tides, which provides fresher water for diked wetlands (DWR 2001; 
Figure 1).  Numerous water control structures, most of which are unscreened for fish, are located 
throughout the marsh; they are opened in early autumn for flooding wetlands to attract wintering 
waterfowl, with water diverted from adjacent subtidal sloughs.  Most water control structures 
remain open to some extent (or are reopened) during winter and spring, mainly to maintain water 
elevations in the wetlands, to leach salts from wetland soils, and to promote growth of desired 
waterfowl plants (DWR 1984).  Diversions are restricted in some sloughs of the marsh during 
winter and spring to reduce entrainment of endangered fishes.  Most wetlands are drained in late 
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spring, with drainage water being discharged directly into sloughs within the marsh, and remain 
dry throughout summer.  Several canal systems - the Roaring River Distribution System, the 
Morrow Island Distribution System, and the Goodyear Slough Outfall - redirect water in the 
marsh, with goal of providing lower-salinity water for managed wetlands (Figure 1; DWR 2001).  
The Fairfield-Suisun Sewer District discharges tertiary-treated wastewater into Boynton Slough; 
the wastewater's salinity and the DO are often low and high, respectively (Figure 1; Siegel et al. 
2011).   
 
Sampling 
 
 Since 1980, monthly juvenile and adult fish sampling has been conducted at standard sites 
within subtidal sloughs of Suisun Marsh.  Originally, 47 sites in 13 sloughs were sampled; 
however, several of these sites were sampled only in 1980 and 1981, with 17 sites in seven 
sloughs being sampled consistently until 1994 (see O'Rear and Moyle 2008).  From 1994 to the 
present, 21 sites in nine sloughs have been regularly sampled by otter trawl (Figure 2).     
 

 
Figure 2.  Current Suisun Marsh Fish Study sampling sites (map by Amber Manfree). 
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 Trawling was conducted using a four-seam otter trawl with a 1.5-m X 4.3-m opening, a 
length of 5.3 m, and mesh sizes of 35-millimeter (mm) stretch in the body and 6-mm stretch in 
the cod end.  The otter trawl was towed at 4 km/hr for 5 minutes in small sloughs and at the same 
speed for 10 minutes in large sloughs.  In Denverton and upper Suisun sloughs, inshore fishes 
were sampled with a 10-m beach seine having a stretched mesh size of 6 mm.  For each site, 
temperature (degrees Celsius, °C), salinity (parts per thousand, ppt), and specific conductance 
(microsiemens, µS) were recorded with a Yellow Springs Instruments (YSI) 85 meter.  Dissolved 
oxygen parameters (milligrams per liter, mg/l, and % saturation), first sampled in 2000, were also 
measured with the YSI 85.  Water transparency (Secchi depth, cm), tidal stage (ebb, flood, high, 
low), and water depths (m) were also recorded. 
 Contents of each trawl or seine were placed into large containers of water.  Fishes were 
identified, measured to the nearest mm standard length (mm SL), and returned to the water.  
Sensitive native species were processed first and immediately released.  Numbers of Siberian 
prawn (Exopalaemon modestus), Black Sea jellyfish, oriental shrimp (Palaemon macrodactylus), 
California bay shrimp (Crangon franciscorum), overbite clam (Potamocorbula amurensis), and 
Asian clam (Corbicula fluminea) were also recorded.  Siberian prawn were first positively 
identified in February 2002, although they likely comprised a large percentage of the 2001 and 
early 2002 shrimp catch that was recorded as oriental shrimp.  However, abundances of Siberian 
prawn for this report are only considered from 2002 onward.  Crustaceans from the order 
Mysida were pooled into one category, “mysids," and given an abundance ranking: 1 = 1-3 
mysids, 2 = 4-50 mysids, 3 = 51-100 mysids, 4 = 101-500 mysids, and 5 = >500 mysids.  
 
Data analysis 
 
 For this report, catch-per-unit-effort (CPUE) values were calculated differently 
depending on the type of comparison.  For comparisons made among calendar years, CPUE for 
beach seines and otter trawls was calculated as 
 

! 

CPUE =
annual number of fish caught in trawls / seines

annual number of trawls /seine hauls
 

 
to remain consistent with previous reports (e.g., Schroeter et al. 2006); CPUE values for 
invertebrates were also calculated likewise, with the annual number of individuals for the 
invertebrate of interest substituting for "annual number of fish."  Slough-to-slough CPUE values 
for select species were calculated similarly except that, to account for unequal effort, minutes 
rather than number of trawls were used in the denominator.  For monthly comparisons, in order 
to account for unequal effort among sloughs, CPUE values for otter trawls were calculated as 
 

! 

CPUE j =

number of fish ij

number of trawlsiji=1

n

"

n  
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where i = slough, j =month, and n is the number of sloughs; once again, CPUE values for 
invertebrates were calculated likewise.  Monthly water-quality averages for 2012 were calculated 
as for CPUE values, with the sum of the measurements of the water-quality parameter of interest 
(e.g., Secchi depth, water temperature) substituting for "number of fish."  X2, the distance in 
kilometers from the Golden Gate Bridge along the thalweg to the near-bed water with salinity of 
2 ppt, was calculated following Jassby (1995).  The Net Delta Outflow Index ("Delta outflow"), 
a proxy for water leaving the Delta, was calculated by summing river flows entering the Delta, 
channel depletions, in-Delta diversions, and State Water Project, Central Valley Project, and 
Contra Costa Water District exports.  Delta outflow was obtained from the California 
Department of Water Resource's Dayflow website (2013a).  
 Age classes of fishes except Sacramento splittail and striped bass were determined from 
peaks and valleys in length-frequency graphs.  Sacramento splittail age classes were determined 
following Matern and Sommer (unpublished data).  Young-of-year (YOY) striped bass were 
classified as those fish belonging to the length-frequency-graph peak corresponding to the 
smallest size classes after April, adults were considered fish larger than 423 mm SL, and all others 
were classified as "juveniles."  Catch of all fishes and by each method from 1979 to 2012 are 
found in Appendix A; annual catch of each slough and number of trawls/seines in each slough in 
2012 are found in appendices B and C. 
 Results of 2012 were then graphed and compared to those of 2011 and averages for all 
years of the study.  
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RESULTS AND DISCUSSION 
 
Abiotic Conditions 
 
Delta Outflow 
 
 2012 was a relatively dry year, with concomitantly below-average Delta outflow for most 
months (Figure 3).  Outflows were moderate and varying from mid-March to early May but were 
generally less than the average over the study's period and far below outflows seen in 2011.   
 

 
         Figure 3.  Daily Delta outflow in 2012, 2011, and the average for all years of the study (1980 - 2012). 
   
From mid-May until mid-November, outflows were relatively low and constant.  Large storms in 
late November and in December raised Delta outflow substantially, the only period during 2012 
when outflows were considerably larger than the average for the last 32 years. 
 
Salinity 
 
 Inverse to low Delta outflows, salinities in 2012 were generally higher than the average for 
the study's entire period, particularly when compared to the wet year of 2011 (Figure 4).  The 
lowest values recorded in 2012 occurred during spring, with X2 within Suisun Bay during most 
of that time.  Summer and autumn salinities were higher than the all-years average, which required 
operation of the salinity control gates during October and November.  High Delta outflows in 
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December 2012 freshened the marsh and thus negated the need to operate the salinity control 
gates in that month.  The highest monthly salinities were always recorded in the southwest marsh 
(i.e., Goodyear and lower Suisun sloughs), the region of the marsh closest to Grizzly Bay (Figure 
1).  The lowest monthly salinities were always found in either Boynton Slough or eastern 
Montezuma Slough, due to those locations' proximities to freshwater sources (i.e., a wastewater 
treatment plant discharge point and the western Delta, respectively; Figure 1).   
 

 
Figure 4.  Monthly average salinity in 2012, 2011, and for all years of the study (1980 - 2012); error bars are 
standard deviations in 2012.  Red bars show when the SMSCG were operating.  X2 and the surrounding green, 
dashed bars show when X2 was within Suisun Bay (i.e., between 55 and 75 km from Golden Gate Bridge). 
 
Dissolved Oxygen (DO) 
 
 Dissolved oxygen (DO) concentrations in the marsh are affected by decomposition of 
organic material, temperature, salinity, wind, and diverting and draining of duck ponds. High wind 
speeds and the resultant greater turbulence can increase DO, as has been commonly observed in 
the marsh during summertime concurrent with afternoon westerly coastal winds, likely due to 
enhanced mixing of surface and subsurface water layers.  Because oxygen solubility decreases 
with higher salinities and temperatures, DO concentrations are frequently lower in summer and 
autumn than in winter.  Water discharged into sloughs from duck ponds during autumn has been 
occasionally observed to contain low DO concentrations and may compound regional low DO 
concentrations in some areas of the marsh (Siegel et al. 2011).  Likewise, draining wetlands in 
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spring by discharging to the sloughs can also depress marsh DO levels (Siegel et al. 2011), though 
not nearly to the extent of that which occurs in autumn. Consequently, marsh DO is usually high 
in winter, lower in spring and summer, and lowest in autumn. 
 The pattern of monthly DO in 2012 was somewhat different than for previous years.  
The lowest values occurred in April and May, while most years, such as 2011, have had the 
lowest values recorded in October (O'Rear and Moyle 2012, 2010, Siegel et al. 2011; Figure 5).  
The low DO values in April and May were likely due in part to above-average water 
temperatures (see Figure 6 in the next section).  All measurements below 5 mg/L in April and 
May occurred in small, dead-end sloughs adjoining managed wetlands (Goodyear Slough, 
Peytonia Slough, Boynton Slough, and Denverton Slough), while values higher than 5 mg/L 
occurred in either larger sloughs (e.g., Montezuma and Suisun sloughs) or a small, undiked slough 
(First Mallard).  Notably, values less than about 4 mg/L during April and May were only 
recorded in upper Goodyear Slough.  DO levels thereafter increased through summer and into 
early autumn (Figure 5).  While DO levels did decline in October (Figure 4), the drop was not 
accompanied by the extremely low values that have been recorded in previous years (O'Rear and 
Moyle 2013b, 2012, 2010, Siegel et al. 2011, Schroeter and Moyle 2004).  This was likely due in 
part to staggered, coordinated flood-drain events among managed-wetlands owners (S. Chappell, 
Suisun Resource Conservation District, personal communication).   
 

 
Figure 5.  Monthly average DO concentration in 2012, 2011, and for the 2000s (2000 - 2012); maximum DO 
concentration in 2012, and minimum DO concentration in 2012.  Error bars are standard deviations in 2012. 
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Water Temperature 
 
 Water temperatures in 2012 differed from the average in several ways.  Both January and 
April exhibited warmer-than-usual water temperatures, consistent with the trends in air 
temperatures for those months (DWR 2012b, 2012c; Figure 6).  The March 2012 average and 
standard deviation were both relatively low, primarily due to our sampling spanning a large 
storm.  Water temperatures were cooler than average in August and September; those values were 
mainly due to our sampling both co-occurring with low-pressure systems and occurring towards 
the ends of both months.  Late spring through mid-summer and autumn both found water 
temperatures in the marsh similar to previous years (Figure 6).  Water temperature differences 
among the sloughs in the marsh appeared minimal (Figure 6). 
 

 
Figure 6.  Monthly average water temperature in 2012, 2011, and for all years of the study (1980 - 2012); error bars 
are standard deviations in 2012. 
 
Water Transparency 
 
 Water transparency is partially a function of Delta outflow, with lower outflows 
corresponding to higher transparencies in the marsh (O'Rear and Moyle 2012, O'Rear and Moyle 
2008, Moyle et al. 1986).  The dry year of 2012 followed this trend, with nine of the 12 months 
having higher average Secchi depth readings than normal (Figure 7).  While Secchi depths were 
slightly greater for early spring, they were much higher than both the all-years average and 2011 
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for most of summer and all of autumn (Figure 7).  Uncommonly high Delta outflows in December 
(Figure 3) were accompanied by a lowering of average Secchi depth below the value for all years.  
With the exception of December, the lowest monthly Secchi depths were always located in 
sloughs far away from Grizzly Bay and the western Delta (Denverton, upper Suisun, and First 
Mallard sloughs), with most of the highest monthly Secchi depths occurring in eastern 
Montezuma Slough.  The deviation of Secchi depths was relatively large from June through 
November (Figure 7), months of low and constant Delta outflow; months with elevated outflows 
generally had lower Secchi depth deviations.   
 

 
Figure 7.  Monthly average water transparency in 2012, 2011, and for all years of the study (1980 - 2012); error 
bars are standard deviations in 2012. 
 
Trends in Invertebrate Distribution and Abundance 
 
 Four plankton-feeding macroinvertebrates are commonly captured by otter trawl in 
Suisun Marsh: California bay shrimp, Siberian prawn, Black Sea jellyfish, and overbite clam, of 
which only California bay shrimp is native.  These invertebrates are important components of 
the food web, either as competitors [e.g., Black Sea jellyfish (Wintzer et al. 2011), overbite clam 
(Feyrer et al. 2003)] or as food sources [e.g., California bay shrimp and Siberian prawn (Nobriga 
and Feyrer 2008)] for fishes of the marsh. 
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Black Sea Jellyfish 
 
 Black Sea jellyfish annual CPUE rebounded from the low point in 2011 to the highest 
ever recorded in 2012 (Figure 8).  The monthly trend in CPUE was quite typical, with medusae 
first appearing in mid-summer, reaching a peak in late summer, and then declining through 
autumn (O'Rear and Moyle 2012, 2013b; Figure 9).  Black Sea jellyfish were extraordinarily 
abundant in upper Suisun (i.e., the SU1 and SU2 sites; Figure 2) and Nurse sloughs during the 
bloom period, with nearly two-thirds (62%) of 2012's catch coming from just those two sloughs.  
Nevertheless, Black Sea jellyfish were common throughout the rest of the marsh except in 
Denverton Slough, where only 11 of the 6,725 medusae were captured.  Water temperatures and 
salinities in Denverton Slough during late summer were within ranges favorable for medusae 
(salinity = 3 - 7 ppt, water temperature >19°C; Schroeter 2008), suggesting that other factors, 
such as hydrodynamics, were not appropriate for a bloom in that slough. 
 

 
Figure 8.  Annual otter trawl CPUE of four common macroinvertebrates. 
 
Overbite Clam  
 
 Annual CPUE of overbite clam in 2012 increased only slightly relative to 2011 (20.5 to 
19.2 clams per trawl, respectively; Figure 8) and was well below the average CPUE (39 clams 
per trawl) since its first appearance in the marsh (1988).  Unlike in 2011, when numbers of 
overbite clam rose only very mildly during the summer recruitment period, the pattern of 
monthly CPUE during 2012 returned to the typical trend from late spring into early autumn of a 
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rapid rise and then decline.  This is likely due in part to relatively high salinities in the marsh 
during 2012 favoring recruitment of early life-history stages (Miller and Stillman 2013, 
Schroeter 2011, Nicolini and Penry 2000).  Similar to 2010, a large proportion (52%) of the 2012 
catch was captured in upper Suisun Slough, with nearly the rest of the catch coming from lower 
Goodyear and lower Suisun sloughs.  Despite high abundances in upper Suisun Slough, overbite 
clams were either extremely rare or absent in nearby small sloughs (e.g., First Mallard Slough 
and Boynton Slough, respectively), suggesting that smaller sloughs in the interior of the marsh 
are inhospitable to the clam (Schroeter 2011).  The overbite clam was neither common nor 
abundant in any slough sampled in the eastern marsh (Denverton, Nurse, and eastern 
Montezuma).   
 
California Bay Shrimp 
 
 Annual California bay shrimp CPUE increased from 2011 to 2012 (Figure 8), with 2012 
having the second-highest CPUE since 2002.  Catch in 2012 was relatively low in January and 
generally declined through April (Figure 9), corresponding to movement of adults out of the 
marsh and downstream into saltier waters needed for reproduction (Hatfield 1985, Siegfried 1980, 
Krygier and Horton 1975).  Recruitment of YOY shrimp in the marsh began in May, reached its 
peak in June, and declined from July to December.  The peak CPUE was attained much earlier in 
2012 (June) than in 2011 (October), due in part to appropriate salinities within the marsh for the 
shrimp occurring earlier in 2012.  This shifting of the peak catch to earlier in the year for dry 
years has been seen before in both Suisun Marsh (e.g., 2007, 2009, 2010) and in other parts of 
the estuary (Hatfield 1985, Siegfried 1980).  Consistent with both recruitment from downstream 
saltier areas of the estuary (e.g., the Pacific Ocean just outside of Golden Gate; Hatfield 1985) 
and the need of the shrimp for relatively saline water, over two-thirds of 2012 catch came from 
just three of the 21 sites sampled in the marsh: the lower Suisun Slough sites and the lower 
Goodyear Slough site, the three sampling locations closest to Grizzly Bay (Figure 2).  
 
Siberian Prawn 
 
 Annual CPUE of Siberian prawn in 2012 was about average, with five years having higher 
values and five years having lower values (Figure 8).  Monthly CPUE generally declined from 
January to December, with just a slight increase in August during the period of recruitment (Oh et 
al. 2002; Figure 9).  The lack of a substantial increase in catch during late summer or early autumn 
in 2012 suggests reduced reproductive success, which is likely due in part to higher-than-average 
salinities (Xu et al. 2008, Emmett et al. 2002).  The bulk of the Siberian prawn population within 
the marsh is generally in the northeastern and northwestern regions, reflecting the association of 
the species with fresher water (Emmett et al. 2002).  This pattern was basically followed in 
2012, with 52% of the catch made in just three sloughs in the northwest and northeast marsh: 
upper Suisun, Boynton, and Denverton (Figure 2).  Nevertheless, moderate catches were made in 
Goodyear Slough and lower Suisun Slough, with each slough hosting 10% of the annual catch. 
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Figure 9.  Monthly average CPUE of four common macroinvertebrates in Suisun Marsh in 2012. 
 
 
Trends in Fish Distribution and Abundance 
 
Otter Trawls 
 
 Annual otter trawl CPUE increased from 17.9 fish per trawl in 2011 to 23.7 fish per trawl 
in 2012 (Figure 10), with the 2012 CPUE slightly below the average for all years (23.7 versus 
25.3 fish per trawl).  The increase in total CPUE was solely due to large jumps in numbers of 
introduced species, mainly striped bass but also common carp (Cyprinus carpio), shimofuri goby 
(Tridentiger bifasciatus), and shokihaze goby (Tridentiger barbatus; Table 1).  Conversely, 
numbers for four abundant native fishes dropped from 2011 to 2012: Sacramento splittail, 
threespine stickleback, prickly sculpin, and, in particular, tule perch (Table 1).   
 The decline in native fishes from 2011 to 2012 appears due partially to the effects of the 
dry year in 2012 on Sacramento splittail.  Sacramento splittail recruitment in the estuary rises 
with increasing floodplain inundation in Yolo Bypass (Feyrer et al. 2006, Sommer et al. 1997) 
during the spawning period (February - May; Sommer et al. 2008, Feyrer et al. 2006, Moyle et 
al. 2004), the flooding of which generally happens more frequently and to a larger spatial extent 
in wet years (Sommer et al. 2004).  There was little floodplain inundation of Yolo Bypass during 
2012 (DWR 2013b) concomitant with a 61% decline in otter trawl CPUE of YOY Sacramento 
splittail from 2011 to 2012 (see "Sacramento Splittail" section for further discussion). 
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Figure 10.  Annual otter trawl CPUE of native and introduced fishes, with important events highlighted. 
 

 
 Table 1.  Percent change in annual otter trawl CPUE of eight common marsh fishes [(% increases are 
 equivalent to percentage points, such that a 100% increase indicates that the value has doubled; species in 
 bold are native; "all years" is the average for 1980 - 2012 for all species except shimofuri goby and 
 shokihaze goby, for which "all years" begins with the year of their respective introductions (1985 and 
 1999)]. 

Species All Years CPUE 2011 CPUE 2012 CPUE 2011-2012 % Change 
Sacramento splittail 2.6 6.3 5.9 -6% 
threespine stickleback 1.7 0.9 0.2 -73% 
prickly sculpin 1.2 1.3 1.0 -24% 
tule perch 2.0 1.9 0.9 -53% 
common carp 0.5 0.2 0.5 +131% 
striped bass 9.3 3.0 10.8 +264% 
shimofuri goby 1.6 0.4 0.6 +58% 
shokihaze goby 0.2 0.2 0.4 +81% 

 
 The reasons for the drop in the CPUE of the other three native fishes from 2011 to 2012 
are more obscure.   Annual otter trawl CPUE of both threespine stickleback and prickly sculpin 
has previously been found to be a function of sampling during draining of managed wetlands in 
late winter and spring (O'Rear and Moyle 2013a, Matern et al. 2002); our lower numbers of 
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these two species in 2012 likely reflect the mismatch in timing between our sampling and large 
drainage events, rather than actual abundances of the species in the marsh.   Of the four native 
species, the decline in CPUE from 2011 to 2012 was greatest for tule perch (Table 1).  While 
part of this decline was, as for splittail, due to lower recruitment [the proportion (33%) of the 
2012 catch comprised of YOY was the fourth lowest in the study's 32-year history; O'Rear, 
unpublished data], the 2012 CPUE of fish older than one year was also low compared to the 
study's average (0.7 and 1.1 fish per trawl, respectively).  Thus the decline in tule perch appears 
to be associated with factors acting on both life-history stages. 
 The substantial increase in the striped bass CPUE from 2011 to 2012, and hence the 
CPUE of all introduced fishes, was primarily due to two months of very high abundance of YOY 
striped bass in 2012 (Figure 11).  This pattern is unusual in two ways: (1) most years have just 
one month of very high abundance of YOY striped bass followed by a rapid, exponential decline 
in CPUE, and (2) the peak CPUE is usually in June (O'Rear and Moyle 2013a, 2013b, 2008).   In 
2012, the peak CPUE was in May and was followed by a CPUE that was nearly as high in June 
(Figure 11).  This could have been due to an expanded spawning season and hence a longer 
recruitment season in the marsh; however, this was not the case since the increase in mean length 
of YOY fish from May to June in 2012 (15 and 28 mm SL, respectively) corresponds well with 
values reported in the literature for a one-month growth of a single cohort of post-larval fish 
[Conover et al. 1997, Boynton et al. 1977 (as cited in Hill et al. 1989), Mihursky et al. 1976 (as 
cited in Hill et al. 1989)].  Instead, the high YOY CPUE persisting into June 2012 was likely due 
to high survival from feeding on abundant, co-occurring mysids (Figure 11), which is an 
important food item for YOY striped bass (Wintzer et al. 2011b, Feyrer et al. 2003).  The earlier 
peak catch in 2012 may have been due to an earlier onset of spawning: we observed the first ripe 
adult striped bass in the marsh in 2012 in February (the first ripe fish observed in 2011 and 2010 
were in May and March, respectively; O'Rear, unpublished data); additionally, the minimum 
temperature necessary for spawning (14°C; Moyle 2002) was reached in mid-April and was 
maintained above that value throughout the rest of spring in the Sacramento River - the primary 
spawning area for striped bass (Moyle 2002) - in 2012 (DWR 2013c).  While 14°C was also first 
reached in mid-April in 2010, it dipped below that value several times in the following three 
weeks; 14°C was not attained in 2011 until early May (DWR 2013c). 
 The large increase in the carp CPUE from 2011 to 2012 was primarily due to a very large 
catch of YOY fish in May 2012.  The bulk of the May 2012 YOY catch (73%) occurred in the 
southwest marsh close to the mouth of Cordelia Slough (i.e., the GY3, SU3, and SU4 sites; Figure 
2) while the upper Goodyear Slough sites contributed only 3% to the catch.  These geographical 
patterns in the YOY catch, coupled with salinities (range: 7.6 - 5.0 ppt) harmful to carp egg-
hatching success (Lam and Sharma 1985) in upper Goodyear Slough in March and April, suggest 
that the YOY carp were spawned within the Cordelia Slough watershed.  Because carp require 
both still-water conditions and submerged/emergent aquatic vegetation for spawning (Smith and 
Walker 2004, Lam and Sharma 1985), the only appropriate habitats within the Cordelia Slough 
watershed for spawning would have been (1) a managed wetland or (2) the lower reaches of 
Suisun and Green Valley creeks. 
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Figure 11.  Monthly average CPUE of striped bass age classes and mysids ("OTR" = otter trawl, "BS" = beach 
seine) in 2012. 
 
 As for the other introduced fishes, increases in otter trawl CPUE from 2011 to 2012 of 
shimofuri and shokihaze gobies was due to elevated recruitment of YOY fish.  In the case of 
shimofuri goby, however, the improved recruitment was apparently followed by high mortality: 
monthly otter trawl CPUE rapidly rose to a peak of 2.7 fish per trawl in July, remained fairly 
high at 2.0 fish per trawl in August, but then plummeted to 0.2 fish per trawl in September.  This 
pattern has been seen in previous years (e.g., 2009), the likely culprit of which has been limited 
food supplies (O'Rear and Moyle 2010).  The pattern in monthly CPUE of shokihaze goby was 
similar to that of shimofuri goby, with a peak CPUE of 2.1 fish per trawl in August followed by 
a much lower CPUE of 0.3 fish per trawl in September.  However, very little is known about the 
biology of shokihaze goby in the estuary, and thus reasons for the increase from 2011 to 2012 
remain unknown. 
 
Beach Seines 
 
 Annual beach seine CPUE increased 88% from 2011 to 2012 (31.4 to 59.1 fish per seine 
haul, respectively; Figure 12), although the 2012 value was about the same as the average for all 
years of the study (57.1 fish per seine haul).  While striped bass were an important factor in the 
higher 2012 CPUE relative to 2011, the main reason for the increase was due to a strong rebound 
in Mississippi silverside numbers (Table 2).  Native fish beach seine CPUE dropped 34% from 
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2011 to 2012 (5.8 to 3.8 fish per seine haul, respectively), and the 2012 value was only 55% of 
the value for all years of the study (6.8 fish per seine haul).  The decline in native fish was 
primarily due to Sacramento splittail and threespine stickleback (Table 2).   
 

 
Figure 12.  Annual beach seine CPUE of introduced, native, and both categories of fishes combined. 
 
 Table 2.  Percent change in annual beach seine CPUE of four common marsh fishes (% increases are 
 equivalent to percentage points, such that a 100% increase indicates that the value has doubled; species in 
 bold are native). 

Species All Years CPUE 2011 CPUE 2012 CPUE 2011-2012 %Change 
Sacramento splittail 1.3 3.1 2.2 -29% 
threespine stickleback 1.9 1.0 0.3 -72% 
Mississippi silverside 34.1 15.7 40.1 155% 
striped bass 5.9 5.9 11.3 93% 

 
 The rise of introduced fishes in beach seines from 2011 to 2012 appears due to two 
factors.  In the case of Mississippi silverside, the generally warm year of 2012 was partially 
responsible for the improved recruitment over 2011.  Warmer water promotes Mississippi 
silverside populations through (1) increasing over-winter survival of adults (Stoekel and 
Heideinger 1988), (2) earlier initiation of spawning (Middaugh and Hemmer 1992), (3) improved 
egg survival (Hubbs et al. 1971), and (4) a faster time-to-hatch (Hubbs et al. 1971).  For striped 
bass, peak beach seine catch occurred in July after the high May and June otter trawl catches and 
concurrent with a decline in mysid numbers in otter trawls (Figure 11).  Lengths of striped bass 
in beach seines averaged about the same as those in the otter trawls and so the beach seine fish 
were not from a later spawn, suggesting that food limitation in the channels of the marsh resulted 
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in  a shift of YOY striped bass into near-shore areas.  This shift has been previously observed at 
different scales in the estuary (Sommer et al. 2011, O'Rear and Moyle 2010).   
 Reasons for the drop in beach seine CPUE of native fishes appear similar to that for the 
otter trawls.  Nearly all Sacramento splittail caught in beach seines are YOY fish (O'Rear and 
Moyle 2012), and thus the decline in beach seine CPUE from 2011 to 2012 reflects reduced 
recruitment (Table 2).  Threespine stickleback numbers are likely due in part to our springtime 
beach seine hauls not occurring during large drainage events of managed wetlands, which was 
not the case in April 2010 when sampling coincided with large managed-wetlands outflows and 
very large beach seine catches of stickleback (O'Rear and Moyle 2013a).   
 
Fish Species of Interest 
 
Fishes of the Pelagic Organism Decline 
 
LONGFIN SMELT 
 
 Otter trawl CPUE in 2012 fell by more than half in comparison to 2011 and was far 
below the average for all years of the study (0.04, 0.09, and 1.21 fish per trawl, respectively; 
Figure 13), with only seven YOY and five adult fish captured in 2012.  These low catches were 
not wholly unexpected given both (1) the positive relationship between Delta outflow and 
longfin smelt abundance and (2) the low Delta outflow in 2012 (Rosenfield and Baxter 2007, 
Matern et al. 2002).  Similar to other dry years (e.g., 2009; O'Rear and Moyle 2010), YOY fish 
peaked in spring and declined through summer; pre-spawning adult fish were present in the 
marsh during autumn and winter (Figure 14).  Four of the five adult fish were captured in lower 
Suisun and lower Goodyear sloughs; YOY fish were scattered throughout the marsh. 
 

 
Figure 13.  Annual otter trawl CPUE of three fishes of the Pelagic Organism Decline ("DS" = delta smelt, "TFS" = 
threadfin shad, and "LFS" = longfin smelt). 
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Figure 14.  Monthly average otter trawl CPUE of two age classes of longfin smelt in 2012. 
 
DELTA SMELT 
 
 Otter trawl CPUE in 2012 declined to a lower level that has been more commonly seen 
over the last decade than the rather high 2011 value (Figure 13).  We caught seven delta smelt in 
the marsh during 2012, with six of the seven fish from the 2011 cohort.  All of the 2011 year-
class fish were caught during winter in Suisun, Nurse, and First Mallard sloughs.  The one fish 
from the 2012 cohort was captured in December in lower Goodyear Slough.   
 
THREADFIN SHAD 
 
 Threadfin shad numbers in 2012 were low.  Both beach seine and otter trawl catches fell 
from 2011 to 2012, with annual CPUE values for both gear types in 2012 being well below 
averages for all years of the study (Table 3).  All but one of the fish captured by beach seine in 
2012 came from Denverton Slough, while only one fish from an otter trawl came from the saltier 
southwest region of the marsh.  Low Delta outflow and above-average salinities in 2012 were the 
factors most likely responsible for the year's CPUE values.  Larval abundance is higher during 
wetter years in the marsh (Meng and Matern 2001); beach seine CPUE is generally greater 
during wet years (O'Rear and Moyle 2009) and is often accompanied by a higher otter trawl 
CPUE (e.g., 2006, 2011; Figure 13).  These patterns in Suisun Marsh are consistent with those in 
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the Delta, where both YOY and older threadfin shad are more abundant in fresher water (Feyrer 
et al. 2009, Feyrer et al. 2007).   
 
 
      Table 3.  CPUE values for threadfin shad;  
       "all years" is the average annual CPUE for 
       1980 - 2012. 

Gear 2011 2012 All Years 
otter trawl 0.3 0.2 0.3 
beach seine 1.6 0.5 2.1 

 
STRIPED BASS 
  
 Striped bass were relatively abundant in 2012, with annual beach seine and otter trawl 
CPUE values both above averages for all years of the study (Figure 15, Table 1 and 2).  YOY 
striped bass were found at all sites of the marsh, but they were particularly abundant in First 
Mallard Slough while being sparse in Cutoff and eastern Montezuma sloughs (Figure 16).  
Juvenile striped bass were fairly evenly distributed throughout the marsh (Figure 16).  Factors 
responsible for the elevated 2012 numbers include earlier recruitment coinciding with abundant 
food supplies, as discussed in previous sections.   
 

 
Figure 15.  Annual otter trawl and beach seine CPUE of striped bass (codes as in Figure 11). 
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Figure 16.  Average otter trawl CPUE of age classes of striped bass in 2012 ("BY" = Boynton Slough, "CO" = 
Cutoff Slough, "DV" = Denverton Slough, "GY" = Goodyear Slough, "LSU" = lower Suisun Slough, "MZ" = 
Montezuma Slough, "NS" = Nurse Slough, "PT" = Peytonia Slough, "SB" = First Mallard Slough, and "USU" = 
upper Suisun Slough). 
 
Sacramento Splittail 
 
 Although recruitment of YOY Sacramento splittail in 2012 was low relative to both 2011 
and the average for all years of the study (0.9, 2.3, and 1.1 fish per trawl, respectively), otter 
trawl CPUE of all splittail was the third highest recorded in the study's history (Figure 17).  The 
high abundance of Sacramento splittail in 2012 was because of large numbers of fish from the 
2011 year class - 2012 had the highest ever annual CPUE of 1+ fish (Figure 17).   The record 
CPUE of 1+ fish was attributable in part to very successful reproduction and recruitment during 
the wet year of 2011 (Contreras et al. 2012, O'Rear and Moyle 2012). 
 Similar to previous years (e.g., 2011), geographic distribution of the age classes was not 
uniform.  YOY CPUE was highest in First Mallard Slough; decent catches were also made in 
Goodyear, lower Suisun, and Peytonia sloughs.  Age-1+ fish were especially abundant in 
Peytonia Slough, although they were common throughout the marsh (Figure 18).  Adult 
Sacramento splittail were notably more abundant in Denverton Slough than elsewhere. 
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Figure 17.  Annual otter trawl CPUE of three age classes of Sacramento splittail. 
 

 
Figure 18.  Average otter trawl CPUE of age classes of splittail in 2012 (codes as in Figure 16). 
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Other Fish Species 
 
WHITE CATFISH 
 
 White catfish were abundant in 2012, with 2012's otter trawl CPUE the fourth highest 
recorded in the study's history (Figure 19).  As for Sacramento splittail, the 2011 year class 
dominated the catch - 86% of the 2012 catch was comprised of age-1+ fish (O'Rear, unpublished 
data).  Similar to other dry years (e.g., 2008, 2010), no YOY white catfish were caught.  These 
patterns are consistent with the white catfish's intolerance of moderate and high salinities (Allen 
and Avault, Jr. 1971, Kendall and Schwartz 1968).   
 The geographic distribution of white catfish in 2012 also reflects, in part, the effect of 
salinity.  Only 3% of all white catfish were caught in the saltier southwestern marsh (i.e., 
Goodyear and lower Suisun sloughs), while 63% of the year's catch came from Denverton Slough.  
The fresher northwestern marsh also hosted relatively high catches: 15% of the total catch came 
from upper Suisun Slough and 36% of the fish older than two years were caught in Boynton 
Slough.   
  

 
Figure 19.  Annual CPUE of white catfish ("WCF") and Mississippi silverside ("MSS"). 
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MISSISSIPPI SIVERSIDE 
 
 Mississippi silverside increased dramatically from 2011 to 2012 (Table 2), although 
2012's annual beach seine CPUE was comparable to the average for all years of the study (40.1 
and 34.1 fish per seine haul, respectively; Figure 19).  The trend in monthly CPUE was fairly 
typical, with moderate catches from January to March, very low numbers during the spring 
months, and then much higher catches in summer and autumn (Figure 20).  However, CPUE 
during 2012 was generally more than twice that of 2011's values for most months (O'Rear and 
Moyle 2012).  Notably, fish about two months old (i.e., fish smaller than 31 mm SL; Gleason 
and Bengston 1996, Hubbs 1982) were only present from July to September in 2011 (O'Rear and 
Moyle 2012) while being present from June to October in 2012 (Figure 20), suggesting a longer 
reproductive period in 2012.  As previously discussed, warmer water temperatures in 2012 were 
likely the major reason for the increased numbers in 2012, although other factors may have also 
played a role.  For example, endocrine-disrupting compounds have been implicated in damage to 
gonads of Mississippi silversides in Suisun Marsh and hence reduced reproductive output, with 
possible effects on population dynamics. 
  

 
Figure 20.  Monthly average beach seine CPUE of size classes (mm SL) of Mississippi silverside in 2012. 
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CONCLUSION 
 
 2012 was a dry year with low Delta outflow that resulted in above-average salinities in 
the marsh.  The marsh's water was also often clearer and warmer than usual.  Consequently, 
catches were dominated by introduced fishes and invertebrates associated with warm and/or salty 
conditions.  Striped bass and Mississippi silverside both had a good year, and Black Sea jellyfish 
reached an all-time high in 2012.  Conversely, native fish numbers were down, especially 
compared to their resurgence in 2011.  The low catch of natives in 2012 was partly attributable 
to little recruitment of Sacramento splittail; decreased numbers of tule perch also contributed 
substantially to the decline of native fishes.   
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APPENDIX A 
 
Total number of fishes caught in Suisun Marsh by otter trawl, beach seine, midwater trawl, and all methods from 
1979 to 2012 (native species in bold). 

Common Name Scientific Name Otter Trawl Beach Seine 
Midwater 

Trawl Total 
American shad Alosa sapidissima 1126 246   1372 
bay pipefish Sygnathus leptorhynchus 2     2 
bigscale logperch Percina macrolepida 17 2   19 
black bullhead Ameiurus melas 875 3   878 
black crappie Pomoxis nigromaculatus 1816 90 1 1907 
bluegill Lepomis macrochirus 19 18   37 
brown bullhead Ameiurus nebulosus 28     28 
California halibut Paralichthys californicus 5     5 
channel catfish Ictalurus punctatus 174 7   181 

Chinook salmon 
Oncorhynchus 
tshawytscha 72 388 1 461 

common carp Cyprinus carpio 4951 448 1 5400 

delta smelt 
Hypomesus 
transpacificus 654 138 4 796 

fathead minnow Pimephales promelas 36 38   74 
golden shiner Notemigonus crysoleucas 6 4   10 
goldfish Carassius auratus 297 47   344 
green sturgeon Acipenser medirostris 3     3 
green sunfish Lepomis cyanellus 5 3   8 

hardhead 
Mylopharadon 
conocephalus 1     1 

hitch Lavinia exilicauda 120 16   136 
largemouth bass Micropterus salmoides   1   1 
longfin smelt Spirinchus thaleichthys 11394 51 5 11450 
longjaw mudsucker Gillichthys mirabilis 1     1 
Mississippi silverside Menidia audens 665 77651   78316 
northern anchovy Engraulis mordax 258   37 295 
Pacific herring Clupea harengeus 467 116   583 
Pacific lamprey Lampetra tridentata 43     43 
Pacific sanddab Citharichthys sordidas 3 2   5 
plainfin 
midshipman Porichthys notatus 11     11 
prickly sculpin Cottus asper 10447 914 1 11362 
rainbow trout Oncorhynchus mykiss 8 4   12 
rainwater killifish Lucania parva 32 94   126 
redear sunfish Lepomis microlophus 2 1   3 
river lamprey Lampetra ayresi 3     3 
Sacramento 
blackfish Orthodon macrolepidotus 24 116   140 
Sacramento 
pikeminnow Ptychocheilus grandis 147 227   374 

Sacramento splittail 
Pogonichthys 
macrolepidotus 25890 3225 14 29129 

Sacramento sucker Catostomus occidentalis 3280 112 5 3397 
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Common Name Scientific Name Otter Trawl Beach Seine 
Midwater 

Trawl Total 
shimofuri goby Tridentiger bifasciatus 9827 2186 1 12014 
shiner perch Cymatogaster aggregata 17     17 
shokihaze goby Tridentiger barbatus 709 2 6 717 
speckled sanddab Citharichthys stigmaeus 3     3 
staghorn sculpin Leptocottus armatus 2516 3314   5830 
starry flounder Platichthys stellatus 1984 260 4 2248 
striped bass Morone saxatilis 82972 13362 30 96364 
surf smelt Hypomesus pretiosus 5     5 
threadfin shad Dorosoma petenense 2715 5147 1 7863 
threespine 
stickleback Gasterosteus aculeatus 17177 5379 6 22562 
tule perch Hysterocarpus traski 18684 1987 6 20677 
wakasagi Hypomesus nipponensis 10 6   16 
warmouth Lepomis gulosus 1     1 
western mosquitofish Gambusia affinis 18 338   356 
white catfish Ameiurus catus 5276 163 13 5452 
white crappie Pomoxis annularis 112     112 
white croaker Genyonemus lineatus 1     1 
white sturgeon Acipenser transmontanus 113   2 115 
yellowfin goby Acanthogobius flavimanus 19439 15812   35251 
Total 224461 131918 138 356517 
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APPENDIX B 
 
Total 2012 otter trawl catch of each fish species in each slough of Suisun Marsh (native species in bold). 

Slough 
Species 

Boynton Cutoff Denverton Goodyear 
lower 
Suisun Montezuma Nurse Peytonia 

First 
Mallard 

upper 
Suisun 

Total 

American 
shad 1     5 4 18 1 7 3 2 41 
black 
bullhead 4   2         4     10 
black 
crappie     18       3 1     22 
channel 
catfish     2     3       2 7 
common 
carp 13 6 27 29 33 11 5 1 6 6 137 
delta smelt       1 3   3   1   8 
golden 
shiner               1     1 
goldfish       1       1     2 
hitch             1       1 
longfin 
smelt 2     1 6 2         11 
Mississippi 
silverside             1       1 
northern 
anchovy                 1   1 
Pacific 
herring         1   1       2 
prickly 
sculpin 23 16 43 89 27 7 7 23 8 4 247 
rainwater 
killifish       1             1 
Sacramento 
pikeminnow               1     1 
Sacramento 
splittail 85 62 119 186 169 117 123 351 198 107 1517 
Sacramento 
sucker 6 4 5 4 1   1 32 8   61 
shimofuri 
goby 9 7 47 4 2 42 9 9 7 17 153 
shokihaze 
goby 3   3   16 7 17 1   46 93 
speckled 
sanddab         1           1 
staghorn 
sculpin 3 5 3 23 37 6 1 4 8 11 101 
starry 
flounder     4 1 15 5 5     5 35 
striped bass 168 23 127 313 382 193 281 390 674 208 2759 
threadfin 
shad   1     1 15 10 15 1   43 
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Slough 
Species 

Boynton Cutoff Denverton Goodyear 
lower 
Suisun Montezuma Nurse Peytonia 

First 
Mallard 

upper 
Suisun 

Total 

threespine 
stickleback 1   4 41 2 1 4 3 3 2 61 
tule perch 25 12 40 4 50 11 43 24 9 9 227 
white catfish 19 7 220 7 3 23 8 9 1 53 350 
white 
sturgeon         1         4 5 
yellowfin 
goby 7 10 4 17 49 19 6 8 14 28 162 
Total 369 153 668 727 803 480 530 885 942 504 6061 

 
Total 2012 beach seine catch of each fish species in Denverton, Montezuma, and upper Suisun sloughs (native 
species are in bold). 

Slough Species 
Denverton Montezuma upper Suisun 

Total 

American shad 2     3 
black crappie 8     8 
channel catfish 1     1 
Chinook salmon 1     1 
common carp 14   2 16 
delta smelt     1 1 
golden shiner     1 1 
goldfish 4     4 
longfin smelt 1     1 
Mississippi silverside 1644 813 628 3085 
prickly sculpin 3   3 6 
Sacramento splittail 88   83 171 
Sacramento sucker 1 4 2 7 
shimofuri goby 14   4 18 
staghorn sculpin 6   48 54 
striped bass 502   371 873 
threadfin shad 16 18 1 35 
threespine stickleback 15   6 21 
tule perch 5   27 32 
western mosquitofish 1   2 3 
white catfish 47     47 
yellowfin goby 18 4 137 159 
Total 2391 839 1316 4547 
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APPENDIX C 
 
Number of otter trawls in each slough and each month in 2012. 

Month Slough 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Total 

Boynton 2 2 2 2 2 2 2 2 2 2 2 2 24 
Cutoff 2 2 2 2 2 2 2 2 2 2 2 2 24 
Denverton 2 2 2 2 2 2 2 2 2 2 2 2 24 
First 
Mallard 2 2 2 2 2 2 2 2 2 2 2 2 24 
Goodyear 3 3 3 3 3 3 3 3 3 3 3 3 36 
lower 
Suisun 2 2 2 2 2 2 2 2 2 2 2 2 24 
Montezuma 2 2 2 2 2 2 2 2 2 2 4 4 28 
Nurse 2 2 2 2 2 2 2 2 2 2 2 2 24 
Peytonia 2 2 2 2 2 2 2 2 2 2 2 2 24 
upper 
Suisun 2 2 2 2 2 2 2 2 2 2 2 2 24 
Total 21 21 21 21 21 21 21 21 21 21 23 23 256 
 
Number of beach seines in each slough and each month in 2012. 

Month Slough 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Total 

Denverton 3 3 3 3 3 3 3 3 3 3 2 3 35 
Montezuma                     3 3 6 
upper 
Suisun 3 3 3 3 3 3 3 3 3 3 3 3 36 
Total 6 6 6 6 6 6 6 6 6 6 8 9 77 
 


